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Abstract

The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM)

solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly

scattering media, without the need for an internal volume mesh. The method is appropriate for domains where it is

reasonable to assume the fluorescent properties are regionally homogeneous, such as when using highly specific molec-

ularly targeted fluorescent contrast agents in biological tissues. In comparison to analytical results on a homogeneous

sphere, BEM predictions of complex emission fluence are shown to be more accurate and stable than those of the FEM.

Emission fluence predictions made with the BEM using a 708-node mesh, with roughly double the inter-node spacing of

boundary nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluorescence emission measure-

ments acquired on a 1087 cm3 breast-mimicking phantom at least as well as those of the FEM, but require only 1/8 to 1/

2 the computation time.
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1. Introduction

Imaging plays a central part of cancer diagnosis, therapy, and prognosis primarily through the detection

of anatomically defined abnormalities. With the wealth of information provided by the now maturing areas

of genomics and proteomics, the identification of molecular markers and targets now promises contrast-
enhanced, diagnostic imaging with specificity and sensitivity that is not otherwise possible with conven-

tional, anatomical imaging. Molecular imaging promises to improve diagnostic imaging and to impact

the quality of cancer patient care.

Near-infrared (NIR) light between the wavelengths of 700 and 900 nm propagates deeply through tissues

and provides a unique approach for molecularly based diagnostic imaging. In the past decade, significant

progress has been made in developing molecularly targeted fluorescent dyes for molecular imaging [1–7].

With near-infrared excitable fluorescent contrast agents that can be conveniently conjugated with a target-

ing or reporting moiety, there is potential clinical opportunity for using non-ionizing radiation with these
non-radioactive contrast agents for ‘‘homing in’’ on early metastatic lesions, performing sentinel lymph

node mapping, and following the progress of therapy.

Direct imaging of fluorescence is possible in small animal and near-surface applications. However, in

order to quantify fluorochrome concentrations and/or to image fluorescent targets deeper into tissues,

where the rapid decay of light renders the diffuse signal weak and noisy, tomographic reconstruction is nec-

essary. Three-dimensional fluorescence tomography has recently been demonstrated in both for near-

surface targets [8–10] and deeper targets [11–16], from experimentally acquired measurements. However,

especially in large volumes, there remain a number of challenges for obtaining reliably quantitative and
highly resolved image reconstructions, as outlined below.

In NIR fluorescence-enhanced tomography [17], the tissue surface is illuminated with excitation light

and measurements of fluorescent light emission are collected at the tissue surface. A forward model of

fluorescent light generation and transport through tissue is used to predict the observable states (e.g.,

emission fluence) at the measurement locations, based on the known excitation light source and an esti-

mate of spatially distributed optical properties of the tissue volume. A computational implementation of

the forward model is typically used repeatedly within an inverse (tomography) method, wherein esti-

mates of spatially distributed optical properties of the tissue are iteratively updated until the predictions
match the observations sufficiently well, or some other convergence criteria is achieved. Consequently, a

rapid and accurate implementation of the forward model is critical for a rapid and accurate tomogra-

phy code.

In clinically relevant volumes of highly scattering media, the forward problem of fluorescent light

generation and transport can be effectively approximated as a diffusive process. The generation and

propagation of fluorescent light through highly scattering media (such as biological tissues) is often

modeled by a pair of second order, elliptic, partial differential equations [18–20]. The first equation

represents propagation of excitation light (subscript x) and the second models the generation and
propagation of fluorescently emitted light (subscript m). Herein, we focus on frequency domain mea-

surements using intensity modulated illumination, because (a) these time-dependent measurements

permit the implementation of fluorescence lifetime tomography [16], and (b) frequency domain mea-

surements have some advantages over time domain measurements approaches, including that ambient

light rejection is automatic and does not require background subtraction. In the frequency domain,

the diffusion approximations to the radiative transport equation over a three-dimensional (3D)

bounded domain X are
�r � ðDxrUxÞ þ kxUx ¼ Sx; ð1Þ

�r � ðDmrUmÞ þ kmUm ¼ bUx ð2Þ
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subject to the Robin boundary conditions on the domain boundary oX of
~n � ðDxrUxÞ þ bxUx ¼ px; ð3Þ
~n � DmrUmð Þ þ bmUm ¼ 0; ð4Þ
where $ is the 3D (3 · 1) grad operator and~n is the 3D (3 · 1) vector normal to the boundary. In fluores-

cence tomography the light source is localized on the surface and thus it can be modeled either by an appro-

priate definition of excitation light source Sx (W/cm3) or as a source flux px (W/cm2) on the surface

boundary. Sources are intensity modulated with sinusoidal frequency x (rad/s), and propagate through

the media resulting in the AC component of complex photon fluence at the excitation wavelength of Ux

(W/cm2). The diffusion (Dx,m), decay (kx,m), and emission source (b) coefficients, as shown below,
Dx ¼ 1
3ðlaxiþlaxfþl0sxÞ

;

Dm ¼ 1
3ðlamiþlamfþl0smÞ

;

(
kx ¼ ix

c þ laxi þ laxf ;

km ¼ ix
c þ lami þ lamf ;

(
b ¼

/laxf

1� ixs
ð5Þ
are functions of absorption coefficients due to non-fluorescing chromophore (laxi,lami), absorption coeffi-

cients due to fluorophore (laxf,lamf), and isotropic (reduced) scattering coefficients ðl0
sx; l

0
smÞ at the two

wavelengths (all in units of cm�1), fluorescence quantum efficiency (/), and fluorescence lifetime (s, in s).

Here, i ¼
ffiffiffiffiffiffiffi
�1

p
, and c is the speed of light in the media (cm/s). The Robin boundary coefficients (bx,bm)

are governed by the reflection coefficients (Rx,Rm), which range from 0 (no reflectance) to 1 (total

reflectance):
bx ¼
1� Rx

2ð1þ RxÞ
; bm ¼ 1� Rm

2ð1þ RmÞ
. ð6Þ
In diffuse fluorescence tomography, the forward model is commonly computationally implemented using

the finite element method (FEM) [13,21,22]. Despite the fact that all excitation sources and detected mea-
surements are restricted to the tissue surface, in the FEM the entire volume must be discretized into nodes

and 3D elements. The internal FEM mesh makes it straightforward to implement the internally distributed

emission source term (bUx). Unfortunately, the internal FEM mesh introduces discretization error that can

render the method unstable, unless a fine enough mesh is employed. In biological tissues, the rate of decay

(k, dominated by the absorption coefficients la) is typically much larger than the rate of diffusion (D, dom-

inated by the inverse of the scattering coefficients l0
s, where l0

s � la), so fine internal volume meshes are

required in order to achieve a smooth and stable result. Furthermore, the spatial resolution of small inter-

nal targets is governed by the internal mesh discretization in a FEM model. In a tomography algorithm,
where the target locations are unknown in advance, fine target resolution in an FEM-based tomography

code will require either a uniformly fine mesh or an adaptive meshing scheme, both of which add to the

computational complexity of the model. If the optical parameters to be estimated in a tomographic recon-

struction are associated with internal nodes or elements, the inverse problem of FEM-based tomographic

reconstruction algorithm will be highly underdetermined, since the number of nodes or elements in an ade-

quately resolved FEM mesh typically far exceeds the number of surface measurements available for inver-

sion [12,14,15]. In fluorescence tomography applications for large volumes this problem is exacerbated

because a very fine mesh resolution imposes large computational memory and time requirements that
may be impractical, and because the signal-to-noise of fluorescence emission measurements in large vol-

umes is extremely low and highly spatially variant [11,12], thereby rendering the inverse problem even more

ill-posed. There have been a variety of weighting and damping approaches proposed for regularization of

ill-posed FEM tomography codes [11,23–26], as well as methods that explicitly reduce the dimensionality of

the parameter space in various FEM-based tomographic applications, including (i) use of a priori structural

information from co-registered magnetic resonance images to reduce the number of uncertain optical

parameters [27], (ii) use of clustering algorithms to dynamically merge spatially adjacent uncertain
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parameters based on their evolving estimates between iterations (aka data-driven zonation) [11,28,29], and

(iii) use of adaptive mesh refinement to enable use of a relatively coarse mesh in the background while

increasing spatial resolution inside regions of interest, based on evolving estimates [30]. Although these reg-

ularization approaches have made FEM-based fluorescence tomography possible, it must be noted that

accuracy of FEM-based tomography is sensitive to the regularization imposed.
These difficulties associated with FEM-based fluorescence tomography motivate us to explore boundary

element method (BEM)-based tomography, wherein the BEM [31] is used as an alternative numerical ap-

proach for solving the diffusion approximations to excitation and emission radiative transport (1) and (2).

In the 3D BEM, the domain is modeled with a finite number of spatially coherent 3D regions, each of which

is considered homogeneous. Only the boundaries of these subdomains must be discretized into nodes and

two-dimensional (2D) elements. Inside each subdomain analytical solutions are employed, with compatibil-

ity and equilibrium constraints enforced on shared boundaries between subdomains [31]. For domains in

which it is reasonable to assume that parameters can be modeled with a relatively small number of region-
ally homogeneous subdomains, the BEM thus requires many fewer nodes and elements than the FEM, and

is subject to less discretization error.

A BEM forward model of fluorescent light generation and propagation is expected to provide increases

in accuracy over the FEM in circumstances where it is reasonable to assume regional homogeneity of fluo-

rescent properties. We postulate that this will be the case for some biomedical fluorescence tomography

applications using highly selective molecularly targeting and reporting dyes. When using receptor-targeted

fluorescent markers, fluorescent properties such as absorption and lifetime will tend to be highly localized

(e.g., on the surface of a discrete tumor) and may therefore be conducive to BEM modeling. While endog-
enous optical absorption and scattering will remain much more spatially heterogeneous that the distribu-

tion of fluorophore, the change in time-dependent measurements with physiological absorption and

scattering contrast is insignificant in comparison to the change owing to the fluorescence decay kinetics.

Indeed, signal perturbations due to endogenous levels of scattering and absorption contrast can be within

the measurement error of time-dependent measurements. Prior computational studies using synthetic data

have confirmed that tomographic inversion of fluorescence emission fluence is relatively insensitive to a

wide range of unmodeled variability in background absorption and scattering [29].

In order for BEM-based fluorescence tomography to be successfully applied, it is necessary to have an
independent means of initially estimating the approximate number and locations of regions to be estimated,

such as with a second imaging modality or reconstruction technique. We outline several possible ap-

proaches below. For example, direct fluorescent images of small animals [32], or co-registered PET or

MRI images in deeper tissues using multimodal contrast agents [33], could be used to provide a priori esti-

mates of target location and geometry. In these cases, only the quantitative optical properties of the tar-

get(s) would need to be estimated, resulting in many fewer unknowns than measurements. In other

applications, it may be reasonable to assume a simple target geometry (e.g., a sphere) and simply estimate

the optical properties and centroid location of the target (e.g., in sentinel lymph node imaging, where the
primary goal is to locate the node [34]). In the more general case, the location, geometry, and optical prop-

erties of targets must be estimated. This could be accomplished by estimating the locations of the boundary

element nodes on the internal subdomains in addition to the optical parameters inside the various subdo-

mains. This form of BEM-based tomography has already been successfully demonstrated in electrical

impedance tomography [35,36]. An approach that has proven successful in BEM-based electrical imped-

ance tomography alternates several generations of a genetic algorithm with several iterations of a gradi-

ent-based local optimizer, to dynamically determine the number, locations, and geometries of internal

subdomains [36]. Other approaches that may prove effective for providing an initial estimate of target num-
bers and locations for subsequent refinement with a BEM tomographic reconstruction include (i) extracting

approximate parameter structure from the result of a small number of iterations of an FEM-based tomo-

graphic reconstruction, (ii) using an artificial neural network (e.g., a radial basis function neural network
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[37]) for rapid initial approximation of parameter structure, or (iii) using a priori parameter structure esti-

mates from other co-registered imaging modalities, such as PET or MRI. Alternatively, targets could be

added in sequentially until an optimal solution is reached. In general, in comparison to FEM-based tomog-

raphy, BEM-based tomographic reconstructions are likely to have (i) fewer unknowns and be overdeter-

mined rather than underdetermined, (ii) greater flexibility regarding modeling the geometries of discrete
internal targets, and (iii) less discretization error internal to homogeneous regions. Hence, for applications

in which one can estimate where to locate internal boundaries, BEM-based fluorescence tomography may

yield more accurate parameter estimates, that are less sensitive to selection of regularization parameters,

and in less computational time, than FEM-based fluorescence tomography.

There are reports in the literature of successful applications of the BEM to the optical excitation equa-

tion (1) [38] and to the electrical impedance diffusion equation [35,36]. In these applications, implementa-

tion of the BEM is relatively straightforward, since all sources and detectors are located on the surface of

the domain, where the BEM must be discretized in any case. However, modeling fluorescently generated
light, emitted from an internal target, is not straightforward with the BEM. In this case, the source term

for the emission equation (2) is internally distributed; it is non-zero wherever there is non-zero fluorescence

absorption coefficient (laxf,lamf). Modeling this internal source term without an explicit internal volume

mesh makes application of the BEM non-trivial. We have found no prior references to the BEM for the

coupled excitation/emission equations (1) and (2). In this contribution, we develop and validate a solution

to this problem that does not require any internal volume mesh.

Ultimately, we plan to explore various approaches for a practical BEM implementation for 3D fluores-

cence tomography, as well as BEM–FEM hybrid approaches. As a first step towards BEM-based fluores-
cence tomography, we herein report on the derivation, implemention, and validation of a prototype BEM

forward model of the generation and propagation of fluorescent light through highly scattering media.
2. BEM formulation for the governing equations

The governing equations (1) and (2) are only coupled in one direction; that is, the solution to Eq. (2)

depends on the solution to Eq. (1), but not vice versa. Consequently, it is possible to solve these equations
sequentially. To predict fluorescence emission fluence Um at surface detectors (generated in response to an

excitation source Sx also at the tissue surface), one first solves the excitation equation (1) with the boundary

conditions (3), to predict excitation fluence Ux at all the nodes in the domain volume X. The predicted exci-

tation fluence is subsequently used in the source term (bUx) for solving the emission equation (2), subject to

boundary conditions (4), for emission fluence Um. Since an internal discretization of the entire volume X is

already a requirement of the FEM, the internally distributed source term for Eq. (2) requires no special

accommodation. However, if a sequential solution approach were employed in a BEM formulation, this

would necessitate the creation of an internal mesh for the BEM in order to represent the internally distrib-
uted fluorescent source. This approach would eliminate many of the potential advantages of the BEM over

the FEM.

Alternatively, one can entirely preclude the need of an internal volume mesh discretization when using

BEM if the governing equations (1) and (2) are solved simultaneously, rather than sequentially. We recast

the governing equations into the following matrix form:
�rTðDrUÞ þ kU ¼ S on X. ð7Þ
Similarly, the boundary conditions (3) and (4) are represented by the matrix equation
nTðDrUÞ þ rU ¼ p on oX. ð8Þ
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Here, we distinguish vector quantities with a single underbar and matrix quantities with a double underbar

and we use the following matrix definitions:
r
ð6�2Þ

¼
r 0

0 r

� �
; n

ð6�2Þ
¼

~n 0

0 ~n

� �
; D

ð6�6Þ
¼

Dx I
ð3�3Þ

0

0 Dm I
ð3�3Þ

2
64

3
75; k

ð2�2Þ
¼

kx 0

�b km

� �
;

r
ð2�2Þ

¼
bx 0

0 bm

� �
; U

ð2�1Þ
¼

Ux

Um

� �
; S

ð2�1Þ
¼

Sx

0

� �
; p

ð2�1Þ
¼

px
0

� �
;

ð9Þ
where I is the identity matrix. The sizes of each matrix are shown for clarity. Note that in the matrix for-

mulation above we have moved the emission source term (bUx) to the left-hand side of the emission equa-

tion. We first present a BEM solution to system (7) on homogeneous domains, and then extend this to the
case of non-homogeneous domains.

2.1. Homogenous domains

By assuming a homogenous domain, where the matrices D, k, b are spatially constant inside the domain

X, we can rewrite Eq. (7) as follows:
�r2Uþ KU ¼ S on X ð10Þ
with
K
ð2�2Þ

¼ D�1k
h i

; ~S
ð2�1Þ

¼ D�1S
h i

. ð11Þ
Here, X�1 indicates the inverse of the matrix X.

We now define an arbitrary matrix of functions W
W
ð2�2Þ

¼
Wxx Wxm

Wmx Wmm

� �
. ð12Þ
Multiplying Eq. (10) by the transpose of W and integrating over the entire domain X yields
Z
X
WTð�r2Uþ KUÞ dx ¼

Z
X
WT~S dx; ð13Þ
where superscript T indicates the transpose operator. Integrating by parts twice and incorporating the

boundary conditions (8) gives
Z
X
ð�r2Wþ KTWÞTU dxþ

Z
oX

�WT oU
on

þ
oWT

on
U

 !
dx ¼

Z
X
WT~S dx. ð14Þ
We now define the matrix W such that the following adjoint equation is satisfied, that is
�r2Wþ KTW ¼ Dj. ð15Þ
We define q = |x � xj| to be the distance from any arbitrary point x in the domain to the jth node, xj. Then,

Dj is a 2 · 2 diagonal matrix of Dirac delta functions centered at node j,
Dj

ð2�2Þ

¼
dðqÞ 0

0 dðqÞ

� �
. ð16Þ
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Hereafter W is called the Green matrix of the 3D diffusion equations (7) in an infinite domain (equivalent to

the Green�s function for the scalar case).

Eq. (14) then simplifies as follows:
UðxdÞ þ
Z
oX

�WT oU
on

þ
oWT

on
U

 !
dx ¼

Z
X
WT~S dx. ð17Þ
A modal decomposition procedure is applied to solve the system (15) (see Appendix A for details) which

yields, for the case of fluorescence photon migration, the following analytical expression for W2 3

W ¼

G
ffiffiffiffiffiffiffiffiffi
� kx

Dx

q
q

� � G
ffiffiffiffiffiffi
�kx

Dx

p
q

� �
�G

ffiffiffiffiffiffiffi
�km

Dm

p
q

� �
Dm
b

kx
Dx
�km

Dmð Þ

0 G
ffiffiffiffiffiffiffiffiffi
� km

Dm

q
q

� �
6664

7775. ð18Þ
Note that, for the fluorescence photon migration case, the component Wmx of the matrix W is zero, reflect-

ing the asymmetry in the governing equations (1) and (2); that is, Ux influences Um, but not vice versa. In
Eq. (18), Gð

ffiffiffiffiffiffiffi
�k

p
qÞ is the scalar Green�s function satisfying the Helmholtz equation
r2G� kGþ dðqÞ ¼ 0; k ¼ kx
Dx

;
km
Dm

. ð19Þ
For 3D domains, the function G is defined as:
Gð
ffiffiffiffiffiffiffi
�k

p
qÞ ¼ 1

4pq
expði

ffiffiffiffiffiffiffi
�k

p
qÞ. ð20Þ
(See Appendix A for the 2D case.) The integral equation (17) can be solved by BEM discretization as fol-

lows. We first consider a triangular mesh discretization !h of the boundary oX. Without loss of generality,

we illustrate with linear elements. Over the boundary oX, we define the real finite functional space
V h ¼ fujK 2 C0ðoXÞg; ð21Þ

where u|K is a linear polynomial, K 2 !h is the generic surface triangular element, and h ¼ max

K�!h

diamðKÞ is
the maximal dimension of the element. We define the global bases for Vh(oX) as {N1,N2, . . .,Nn}, where n is

the number of nodes. The generic basis elements are defined such that Ni(xj) = dij with dij the Kronecker

symbol. By means of these bases, the fluence U, its normal derivative q ¼ oU
on , and the boundary flux p

can be approximated as
UðxÞ ¼
Xn
k¼1

NkðxÞUk; qðxÞ ¼
Xn
k¼1

NkðxÞqk; pðxÞ ¼
Xn
k¼1

NkðxÞpk; ð22Þ
where Uk, qk and pk indicate values relative to the node k. Using these approximations and choosing xj to

span all the nodes of the surface !h, i.e., xj = xi "i = 1, . . .,n, Eqs. (17) and (8) give, respectively, the follow-

ing set of algebraic equations:
HUþGV ¼ S; ð23Þ
V ¼ �RUþ P. ð24Þ
The matrix R is block-diagonal of dimension (2n · 2n), with n the number of nodes, as follows:
R
ð2n�2nÞ

¼

r

r . . .

. . .

r

2
6664

3
7775. ð25Þ
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We define U, V, P and S as the column vectors of the nodal values of the fluence U, its normal derivative

q, the prescribed boundary flux p and the volume source S, respectively. These are vectors of dimension

(2n · 1), i.e.,
U
ð2n�1Þ

¼

U1

. . .

. . .

Un

2
6664

3
7775; V

ð2n�1Þ
¼

q
1

. . .

. . .

q
n

2
6664

3
7775; P

ð2n�1Þ
¼

p
1

. . .

. . .

p
n

2
6664

3
7775; S

ð2n�1Þ
¼

s1

. . .

. . .

sn

2
6664

3
7775; ð26Þ
where the (2 · 1) vector component sj at each node j is given by
sj
ð2�1Þ

¼ �
Z
X
WTðqÞSðxÞ dX. ð27Þ
In the case of a point source located on the surface of a 3D domain, we effectively use a lumped mass matrix

to concentrate the source at a specific point xs located one scattering length inside and normal to the surface

beneath the point source, so the integral in Eq. (27) disappears as follows:
sj
ð2�1Þ

¼ �WTðjxj � xsjÞSðxsÞ. ð28Þ
By relocating the point source just inside the domain (so xj 6¼ xs "j,s) we avoid singularities arising from

source locations that coincide with a boundary node. The BEM matrices H, G are partitioned as
H
ð2n�2nÞ

¼

h
11

h
12

. . . h
1n

. . . . . .

. . . h
jk

. . .

. . . h
nn

2
66664

3
77775; G

ð2n�2nÞ
¼

g
11

g
12

. . . g
1n

. . . . . .

. . . g
jk

. . .

. . . g
nn

2
66664

3
77775; ð29Þ
where the block elements are computed as follows:
h
jk

ð2�2Þ

¼ djkI
ð2�2Þ

þ
Z
oX

oWTðqÞ
on

NkðxÞ dx; ð30Þ

g
jk

ð2�2Þ

¼ �
Z
oX

WTðqÞNkðxÞ dx. ð31Þ
Remark 1. Note that, since the component Wmx of the Green matrix W is zero [see Eq. (18)], the resulting

matrices H and G are 3/4 populated 2n · 2n matrices, where n is the number of nodes in the BEM mesh. By

defining Ux and Um as column vectors of the nodal values of the fluences Ux and Um, the vectors U and V
can be rearranged as follows:
U
ð2n�1Þ

¼
Ux

Um

� �
; V

ð2n�1Þ
¼

q
x

q
m

" #
ð32Þ
and one finds that the matrices H and G in Eq. (23) have the following structure:
H ¼
Hxx 0

Hxm Hmm

" #
; G ¼

Gxx 0

Gxm Gmm

" #
. ð33Þ
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For a given surface mesh, the size of the BEM matrices is smaller (dimensioned by number of boundary

nodes times 2) than the size of the FEM matrices for the excitation and emission equations (dimensioned by

number of nodes in the FEM volume mesh). The computation of the matrix block element entries (Eqs. (30)

and (31)) can be done using Gauss integration (we used seven collocation points inside each triangular ele-

ment) as long as node k does not coincide with one of the nodes attached to any of the triangular elements
attached to node xj. In this case the integrals appearing in Eqs. (30) and (31) are regular. Otherwise the

integrals are singular and special computation is required, as discussed in Appendix B. Substituting Eqs.

(24) into (23) yields
Fig. 1.

(illustr
ðH�GRÞU ¼ S�GP. ð34Þ
This is a single equation to solve for all boundary nodal values of the light fluence U (comprising both exci-

tation and emission fluence).

2.2. Inhomogenous domains

2.2.1. Definition of the problem and BEM formulation

Assume that a domain volume X, with boundary oX, comprises an inner subdomain Xi, with boundary
oXi, and outer subdomain Xo, with boundary oXo = oXi [ oX (Fig. 1). The internal properties of the vol-

ume Xi are characterized by the matrices Di, ki whereas the outer volume Xo is defined by the matrices Do,

ko. The Robin boundary conditions (8) still apply on oX. Inside each volume Xi (inner) and Xo (outer) we

define Ui and Uo as the inner and outer light fluences defined on the boundary nodes directly touching each

domain (note that nodes defining the boundary of the inner volume Xi are shared). Eq. (17) still holds since

each volume is defined as being internally homogenous and two integral equations (inner and outer equa-

tions, respectively) can be defined as follows:
UiðxdÞ þ
Z
oXi

�WT
i

oUi

oni
þ
oWi

T

oni
Ui

 !
dx ¼ 0 xd 2 oXi; ð35Þ

UoðxdÞ þ
Z
oXo

�WT
o

oUo

ono
þ
oWT

o

ono
Uo

 !
dx ¼

Z
Xo

WT
oS

� �
dx xd 2 oXo. ð36Þ
Here, Wi and Wo are the Green matrices relative to the subdomains Xi and Xo, respectively. Note that,

according to the inner normal ~ni, the flux leaving the inner volume through the inner boundary oXi is

Di
oUi

oni
whereas the flux entering the outer volume is �Di

oUi

ono
. We can now define the following matching

boundary conditions required at the shared nodes along the internal boundary oXi
(a) (b)

oΩ∂

Ω∂ i

in
→

on
→

on
→

oΩ

iΩ

Geometry and notation of inhomogeneous domain showing (a) the outer subdomain Xo and (b) one inner subdomain Xi

ated in 2D, for clarity).
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UiðxÞ ¼ UoðxÞ; x 2 oXi; ð37Þ

Di

oUiðxÞ
oni

¼ �Do

oUoðxÞ
ono

; x 2 oXi. ð38Þ
These conditions impose the continuity of the light fluence (37) and the conservation of the light flux (38) at

the nodes on the shared boundary oXi. Consider a triangular mesh discretization for both the boundaries

oXi and oXo = oXi [ oX. In the following, the subscript I or O indicates quantities relative to the nodes of

the inner boundary oXi or the outer boundary oXo, respectively, whereas the superscript (i) or (o) indicates

properties relative to the inner volume Xi or outer volume Xo. We use linear elements as we did for the

homogenous case (see Eq. (22)) and indicate with nI and nO the number of nodes of the inner and outer

boundaries, respectively, and nT = nI + nO the total number of nodes. The BEM discretization of the inner
and outer equations are, respectively,
HðiÞ

ð2nI�2nIÞ
U

ðiÞ
I

ð2nI�1Þ
þ GðiÞ

ð2nI�2nIÞ
V

ðiÞ
I

ð2nI�1Þ
¼ 0

ð2nI�1Þ
ð39Þ
and
HðoÞ

ð2nT�2nTÞ
UðoÞ

ð2nT�1Þ
þ GðoÞ

ð2nT�2nTÞ
VðoÞ

ð2nT�1Þ
¼ SðoÞ

ð2nT�1Þ
; ð40Þ
where the sizes of matrices and vectors are shown for clarity. Here, UðoÞ and VðoÞ and SðoÞ are defined as

follows:
UðoÞ

ð2nT�1Þ
¼

U
ðoÞ
I

ð2nI�1Þ

U
ðoÞ
O

ð2nO�1Þ

2
6664

3
7775; VðoÞ

ð2nT�1Þ
¼

V
ðoÞ
I

ð2nI�1Þ

V
ðoÞ
O

ð2nO�1Þ

2
6664

3
7775; SðoÞ

ð2nT�1Þ
¼

0
ð2nI�1Þ

S
ðoÞ
O

ð2nO�1Þ

2
664

3
775; ð41Þ
and U
ðiÞ
I and V

ðiÞ
I refer to the nodal values of the inner fluence Ui and its normal derivative along the inner

boundary oXi. The vectors U
ðoÞ
I and V

ðoÞ
I are relative to the nodal values of the outer fluence Uo and its

normal derivative along the inner boundary oXi, respectively, whereas U
ðoÞ
O and V

ðoÞ
O are vectors relative

to the nodal values of the outer boundary oXo. Note that both the elements of the matrices H(i) and

G(i), as well as the matrices H(o) and G(o), are computed using Eqs. (30) and (31), with oXi and oXo as

boundary contours for the integrations, respectively.

Because of the matching conditions (37) and (38) we need to impose the nodal conditions
U
ðoÞ
I ¼ U

ðiÞ
I ; ð42Þ

DðoÞV
ðoÞ
I ¼ �DðiÞV

ðiÞ
I ; ð43Þ
where DðoÞ and DðiÞ are block-diagonal matrices defined as follows:
DðoÞ

ð2nI�2nIÞ
¼

Do

. . .

. . .

Do

2
66664

3
77775; DðiÞ

ð2nI�2nIÞ
¼

Di

. . .

. . .

Di

2
66664

3
77775. ð44Þ
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From Eq. (39) and the matching conditions (42) and (43) we derive a relation between the vectors VðoÞ and

UðoÞ that is equivalent to a discretized Robin boundary condition as in Eq. (24) for the homogenous case.

Since the matrix G(i) is non singular, from Eq. (39) one obtains
V
ðiÞ
I ¼ �ðGðiÞÞ�1

HðiÞU
ðiÞ
I . ð45Þ
Applying the matching condition (43), Eq. (45) yields
DðoÞV
ðoÞ
I ¼ DðiÞðGðiÞÞ�1

HðiÞU
ðiÞ
I . ð46Þ
Because of the matching condition (42), the following equation holds
V
ðoÞ
I ¼ ðDðoÞÞ�1

DðiÞðGðiÞÞ�1
HðiÞU

ðoÞ
I . ð47Þ
This is a relation between the vector V
ðoÞ
I of the nodal normal derivatives of the outer fluence Uo and the

vector U
ðoÞ
I of the nodal values of the fluence Uo on the inner boundary oXi. The discretization of the Robin

boundary condition on the outer boundary oX (see Eq. (8)) is defined the same as in Eq. (23) for the homog-
enous case, that is
V
ðoÞ
O ¼ �RU

ðoÞ
O þ P. ð48Þ
Using the vector definitions (41), Eqs. (47) and (48) can be recast together in the following block form:
VðoÞ ¼ �RUðoÞ þP; ð49Þ
where we have defined
R
ð2nT�2nTÞ

¼ DðoÞ
� ��1

DðiÞðGðiÞÞ�1
HðiÞ 0

0 R

2
4

3
5; P

ð2nT�1Þ
¼

0

P

� �
. ð50Þ
Substituting Eq. (49) into Eq. (40) yields the following system:
ðHðoÞ �GðoÞRÞUðoÞ ¼ SðoÞ �GðoÞP. ð51Þ
Eq. (51) has the same matrix structure as Eq. (34) for the homogenous case. Extension to multiple non-

overlapping inner domains is straightforward.
3. Experiments

3.1. Comparison to FEM and analytical solution on a homogeneous sphere

Both the proposed BEM formulation and the FEM (see [22] for a detailed description of our vectorized

finite element implementation) were implemented in Matlab Version 6.5 [39] on a 2.2 GHz Pentium IV. In

order to test the proposed BEM formulation, we first consider the propagation of light through a homog-
enous sphere of radius C. Using spherical coordinates q, u, and h, for the following axisymmetric boundary

conditions:
Dx
oUx

on
¼ P gðuÞ; Dm

oUm

on
¼ 0 ð52Þ
the analytical solution of the coupled equations (10) in scalar form has expression as follows (see Appendix

C for derivation):
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Uxðq;uÞ ¼
P gðuÞjg

ffiffiffiffiffiffi
�kx
Dx

q
q

� �
dxj

0
g

ffiffiffiffiffiffi
�kx
Dx

q
C

� � ; ð53Þ

Umðq;uÞ ¼ P gðuÞ
bDm

kx
Dx
� km

Dm

� � jg

ffiffiffiffiffiffi
�km
Dm

q
q

� �
Dm

ffiffiffiffiffiffi
�km
Dm

q
j0g

ffiffiffiffiffiffi
�km
Dm

q
C

� �� jg

ffiffiffiffiffiffi
�kx
Dx

q
q

� �
Dx

ffiffiffiffiffiffi
�kx
Dx

q
j0g

ffiffiffiffiffiffi
�kx
Dx

q
C

� �
2
64

3
75. ð54Þ
Here, Pg(u) are the Legendre polynomials, jg(x) are the spherical Bessel functions of first kind of order g
and j0gðxÞ is the derivative of jg(x).

The case of g = 0 corresponds to a uniform imposed flux on the surface of the sphere, and hence the ana-

lytic solution is also homogenous on the surface of the sphere, rendering this a good test case for the accu-

racy and stability of numerical solutions. We have solved this problem using the BEM formulation (34) on

5 cm diameter spheres with nine levels of surface mesh discretization, using triangular elements with linear
basis functions. Specifications for the coarsest, medium, and finest of these nine sphere meshes are detailed

in Table 1 and depicted in Fig. 2. For these experiments, we selected optical property values consistent with

the background properties employed in human breast phantom studies, assuming the presence of low levels

of the fluorescent contrast agent Indocyanine Green [12], as shown in Table 2, and assumed a modulation

frequency of 100 MHz. The FEM discretizations used the same surface meshes as did the BEM but had

additional discretization of the internal volume of the sphere into tetrahedral elements, also using linear

basis functions.

Experimental measurements are referenced in order to account for instrument effects and unknown
source strength [12]. For example, referencing may be accomplished by dividing all measurements by the

measurement at a designated reference location, generally one with strong measured amplitude. For the

homogeneous sphere problem, any variation in nodal estimates is introduced by numerical error, and hence

the accuracy of referenced predictions will vary depending on the level of noise in the prediction at an arbi-
1

of the nine mesh discretizations of the 5 cm diameter sphere

Coarsest sphere Medium sphere Finest Sphere

FEM BEM FEM BEM FEM BEM

ode spacing (cm) 1.43 1.88 0.56 0.66 0.32 0.40

node spacing (cm) 2.20 2.20 0.95 0.83 0.60 0.52

er of nodes 53 26 873 218 4215 602

The surface mesh for the (a) coarsest, (b) medium, and (c) finest discretizations of the nine sphere meshes used (see Table 1).



Table 2

Optical parameter values used in all simulations at the excitation wavelength (kx) and the emission wavelength (km)

laf (cm
�1) lai (cm

�1) l0s ðcm�1Þ R s (s) /

kx 5.98e�3 2.48e�2 1.09e2 2.82e�2 – –

km 1.01e�3 3.22e�2 9.82e1 2.82e�2 5.6e�10 1.6e�2
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trarily selected reference node. In order to minimize this sensitivity to choice of reference node for the

homogeneous sphere, we instead referenced these predictions to the mean. Specifically, we divided all pre-

dicted complex fluences (Ux or Um) for a given source by the complex mean of the nodal predictions of Ux

or Um for that source. For both the FEM and BEM, we define the prediction error as the referenced ana-

lytical solution minus the referenced numerical prediction, at all surface nodes on the sphere, for both real

and imaginary components of the referenced predicted fluence (Ux or Um). Referencing by the mean guar-

antees that the mean of the referenced predictions has real component equal to one and imaginary compo-

nent equal to zero, so this process removes all bias from the prediction error. Consequently, the accuracy of
referenced predictions on the homogeneous sphere, defined as the root mean square of the prediction error

(RMSE), is equivalent to the standard deviation (r) of the prediction error.

3.2. Comparison to FEM and experimental data from a non-homogeneous breast phantom

In order to test the BEM on a non-homogeneous domain, we compared predictions from the BEM for-

mulation (51) to experimentally acquired measurements. In prior work [12,14–16], we experimentally col-

lected measurements of frequency domain fluorescence emission fluence (Um) from the surface of a breast
shaped tissue-mimicking phantom (a 10 cm diameter hemispherical ‘‘breast’’ atop a 20 cm diameter cylin-

drical portion of the ‘‘chest wall’’). Specifically, modulated excitation light at 100 MHz was used to sequen-

tially illuminate the phantom surface (783 nm) via multimode optical fibers (1 mm diameter, model

FT-1.0-EMT, Thorlabs Inc., NJ). For the data set reported here, 11 source locations were illuminated

sequentially and the modulated fluorescence emission signals for each source were detected at 64 locations
Fig. 3. Locations of the 11 sources (asterisks) and 64 detectors (black dots) on the surface of the hemispherical portion of the breast

phantom, for the experimental data set presented.
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on the phantom surface, as shown in Fig. 3 (detectors on the second half of the hemispherical surface were

so far from the target that we did not detect any emission signal there). Thus, a total of 704 source–detector

pairs (11 sources · 64 detectors) were imaged. The detected light was transmitted via multimode optical fi-

bers to an interfacing plate that was imaged using a gain-modulated intensified charge coupled device

(ICCD) camera. An optical filter assembly containing an 830-nm interference filter and a holographic notch
filter was used to reject excitation light and pass fluorescent light. The transmitted fluorescent light was im-

aged onto the photocathode of an image intensifier (FS9910C, ITT Night Vision, VA), also modulated at

100 MHz. The resulting image on the phosphor screen of the intensifier was collected by the integrating

CCD camera (CCD-512-EFT Photometric CH12, Roper Scientific, Trenton, NJ). The phosphor output

was sensitive to the phase delay existing between the two phase-locked oscillators (Marconi Instruments

model 2022D, UK; and Programmed Test Sources model 310M201GYX-53, Littleton, MA), modulating

the incident NIR excitation light and the photocathode of the image intensifier, respectively. By varying

the phase delay between the two oscillators from 0 to 2p, the steady-state intensities at each pixel of the
CCD image varied sinusoidally. Fast Fourier transforms (FFT) were performed on the acquired CCD

images to yield observed amplitude (IAC) and phase shift (h) of the fluorescence signal for each collection

fiber, which were then converted to complex emission via Um = IAC Æ exp(ih). Five repetitions for each

source–detector observation were collected and averaged to yield what we term the ‘‘measurements’’. Mea-

surements below the noise floor of IAC

IDC
6 0.025 were discarded. The remaining 401 measurements of complex

emission fluence were referenced by dividing through by the measurement at the reference detector, spec-

ified for each source, in order to account for unknown source strength and instrument effects. A schematic

of the instrumentation is shown in Fig. 4. Further details about the instrument set-up and the data acqui-
sition procedures are provided elsewhere [12].

We have previously developed an FEM forward model for Eqs. (1) and (2) [22]. By incorporating this

FEM model, using the 6956 node mesh shown in Fig. 5(a), into the Bayesian approximate extended Kal-

man filter image reconstruction algorithm [11,12,28,29], we have previously performed 3D tomographic

reconstructions of both fluorescence absorption (laxf) [12,14,15] and fluorescence lifetime (s) [16] using

experimentally collected data from the breast phantom. These previous results indicate that the FEM
Fig. 4. Schematic of the instrumentation used for data collection. See text for details.



Fig. 5. Cut-away views of the discretizations used for the breast phantom simulations: (a) 6956 node finite element mesh, and (b) 708

node boundary element mesh showing internal target. See Table 4 for additional specifications.
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forward model mismatch (which lumps measurement error and model error) is sufficiently low to permit

identification and localization of 1 cc embedded fluorescent targets, although our FEM reconstructions

are not quantitatively accurate. In lieu of an analytic solution for these heterogeneous domains, we herein

compare the forward model mismatch of the BEM to that of the FEM on an experimentally acquired data

set [12], with background optical properties as shown in Table 2, and a 1 cc fluorescent target with 100:1

target:background contrast in laxf, with centroid located 1.4 cm from the surface of the phantom breast.

Since the BEM is more memory demanding than the FEM, using the boundary nodes of the mesh shown
in Fig. 5(a) for the BEM is not computationally practical with our current computational resources. Con-

sequently, we implemented a much coarser 708 boundary node BEMmesh to model the breast phantom (26

of these nodes were used to model the boundary of the embedded target), as shown in Fig. 5(b). The inter-

node spacing of the 682 BEM nodes on the domain surface is approximately double that of the 2339 bound-

ary nodes in the FEM. Note that the geometry and location of the cubic target can be very accurately

represented in even when a course BEM external surface mesh is imposed, because (a) the surface mesh

of the internal target is independent of the coarseness of the mesh on the outer domain surface, and (b)

the shape of the internal surface is not constrained by the locations of nodes in an internal volume discret-
ization, as in the FEM. We remind the reader that in this manuscript we are only addressing the forward

problem, where the target location, size, and shape are known. In the inverse problem, the locations of

internal target surface nodes could be iteratively estimated, as discussed in Section 1 (e.g., as in [36]).

FEM and BEM predictions were referenced in the same manner as the experimental measurements.

Model mismatch is defined as the real and imaginary components of the referenced measured Um minus

the referenced predicted Um. The mean of the model mismatch is an indication of bias in the combined

model and measurement error. The variance of the model mismatch is a measure of the noise level in

the combined model and measurement error.
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4. Results

4.1. Comparison to analytical sphere solutions

In comparison to the analytical solution on the homogeneous sphere using biologically realistic optical
properties, the BEM was over an order of magnitude more accurate than the FEM, due to the additional

discretization error incurred by the FEM caused by the internal volume mesh required for this method. For

example, in Fig. 6 we show the referenced predictions of emission fluence on the finest sphere mesh used,

where it is apparent that the BEM solution is much smoother than the FEM. Consequently, bias in FEM

predictions is much more sensitive to choice of a specific node for referencing; by referencing by the mean,

as described in Section 3.1, we avoid this problem by explicitly eliminating all bias. Convergence of the ref-

erenced predictions of both Ux and Um improves more rapidly with the BEM than with the FEM as the

meshes become more refined. This is evidenced by the steeper slopes of the BEM convergence curves shown
in Fig. 7. Note that BEM predictions of emission fluence, using all but the coarsest mesh, outperform FEM

predictions with even the finest mesh.

4.2. Comparison to experimental data from breast phantom

Referenced predictions of emission fluence from the FEM with the fine mesh (Fig. 5(a)) and the BEM

with the coarser mesh (Fig. 5(b)), exhibited similar model mismatch when compared to experimental results

on the non-homogeneous breast phantom. In Fig. 8, we illustrate FEM and BEM predictions, relative to
emission measurements, for one of the 11 source illuminations. Here it can be seen that, for some measure-

ments, the FEM matches the data more closely than the BEM, and for other measurements the BEM

matches the data more closely. Some measurements are clearly outliers with large measurement error that

add to the model mismatch, but without a priori knowledge of the true domain one would not know this, so

we have left them in. On average, over all 11 sources (401 source–detector pairs), the distribution of the

observed model mismatch was very similar for both FEM and BEM predictions of real and imaginary com-

ponents of emission fluence, as shown in Fig. 9, and quantified in Table 3. Although the inter-node spacing
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Fig. 6. FEM (a,c) and BEM (b,d) referenced predictions for the real (a,b) and imaginary (c,d) components of emission fluence, at all

surface nodes on the finest sphere (Fig. 2(c), Table 1). Perfect referenced predictions would be a horizontal line at 1.0 for the real

components (a,b) and a horizontal line at 0.0 for the imaginary components (c,d).
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Fig. 7. Accuracy of FEM and BEM referenced predictions of real (a,b) and imaginary (c,d) components of excitation (a,c) and
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referenced analytical solutions minus referenced predictions.

0 10 20 30 40
1

2

3

detector

re
al

(Φ
m

) measured
FEM
BEM

0 10 20 30 40

–0.1

0

0.1

detector

im
ag

(Φ
m

)

Fig. 8. (a) Real and (b) imaginary components of predicted and observed emission fluence at all detector locations for one source

illumination. See Fig. 9 and Table 3 for summary statistics on all 11 sources.

F. Fedele et al. / Journal of Computational Physics 210 (2005) 109–132 125
on the domain surface in the BEM mesh was approximately double that of the FEM mesh (Fig. 5), the bias

and variance of the BEM predictions were actually lower than those from FEM predictions (Table 3).

The FEM system matrices are large and sparse, while the BEM system matrix is relatively small but 3
4

dense (see Eq. (33)). In fact, although the BEM breast mesh had an order of magnitude fewer nodes than
the FEM mesh, it had an order of magnitude more non-zero elements in its system matrix (Table 4), thus

requiring more memory. Despite this, total prediction time for all 11 source illuminations on the breast

model took about half the time with the BEM than with the FEM. If the portions of the system matrix

associated with the outer surface mesh (H(o) and G(o)) were pre-computed, the BEM only took one eighth



–0.5 0 0.5
0

0.1

0.2

0.3

0.4

model mismatch real(Φ
m

)

no
rm

al
iz

ed
 fr

eq
ue

nc
y

–0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

model mismatch imag(Φ
m

)

no
rm

al
iz

ed
 fr

eq
ue

nc
y

FEM
BEM

FEM
BEM

(a)

(b)

Fig. 9. Observed frequency distribution of (a) real and (b) imaginary components of model mismatch of (measured–predicted) Um, for

all 401 source–detector pairs on the non-homogeneous breast phantom, using the meshes shown in Fig. 5. If there were no

measurement or model error the distributions would be a vertical spike at 0 of height 1.0.

Table 3

Error metrics for FEM and BEM predictions of real and imaginary components emission fluence, as compared to measured data on

the breast phantom; mean (a.k.a., bias) and variance are reported for referenced (measured–predicted) Um from 401 source–detector

pairs (all 11 sources) (see Fig. 7)

Bias real (Um) Variance real (Um) Bias imag (Um) Variance imag (Um)

FEM �0.0313a 0.0226 �0.0048 0.0072

BEM �0.0040a 0.0153 �0.0044 0.0033

a p < 0.001, paired t-test.

Table 4

Computational requirements of two breast meshes used (Fig. 3)

Breast mesh Nodes Elements Non-zeros Runtime (s)

FEM 6956 34,413 188,732 139

BEM 708 1408 1,503,792 67 (17a)

a With pre-computation of outer mesh.
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the time of the FEM (Table 4). Pre-computing the outer surface mesh may be a practical approach in a

BEM tomography application where the background properties and geometry of outer domain are held

constant, and only the locations, sizes, shapes, and values of internal targets are estimated. Since this

was a prototype implementation of the BEM and used a direct solver, we anticipate that further implemen-

tation improvements will yield additional speedups for the BEM.



F. Fedele et al. / Journal of Computational Physics 210 (2005) 109–132 127
5. Summary and conclusions

Finite element method (FEM) approaches to fluorescence tomography in clinically relevant volumes

have proven feasible [12,14–16], but are highly underdetermined. Consequently, FEM-based tomo-

graphic reconstructions are dependent on, and sensitive to, regularization schemes. In contrast, bound-
ary element method (BEM) based tomography may afford high resolution imaging of internal targets,

in the context of an overdetermined problem. While FEM models may be necessary for modeling do-

mains with a large degree of continuously varying heterogeneity, the BEM method is appropriate for

applications in which the domain can be modeled with a small number of homogeneous subdomains.

One such potential application is when modeling fluorescence from molecularly targeting dyes that ex-

hibit highly localized spatial accumulation (e.g., on discrete tumors). Using the BEM, only the external

boundary and the internal target boundaries require discretization, and regional solutions are solved

analytically. The BEM can accurately model the geometries of internal subdomains, independent of
the degree of surface discretization. Unfortunately, the application of a BEM forward model to the

fluorescence diffusion equations is not straightforward, because of the internally distributed fluorescent

emission source caused by embedded fluorophore.

In this contribution, we have developed a 3D BEM formulation that allows the simultaneous solu-

tion of the excitation and emission equations that describe the generation and propagation of fluores-

cent light through turbid media, without the need for an internal volume mesh. This formulation is

based on a derivation of the fundamental solution to the coupled system of excitation and emission

equations. The BEM is shown to be more accurate and more stable than the FEM, when compared
to an analytic solution on a spherical homogeneous domain using optical properties consistent with

those of biological tissues, owing to the lower internal discretization error inherent in the BEM. For

a given inter-node spacing in the mesh, the BEM requires more memory and runtime than the

FEM. However, the BEM with a coarser mesh gives more accurate and stable results, and takes less

computer time, than the FEM with a fine mesh. Emission fluence predictions made with the BEM using

a 708-node boundary mesh, with roughly double the inter-node spacing of boundary nodes as in a

6956-node FEM volume mesh, match experimental frequency-domain fluorescence emission measure-

ments acquired on a non-homogeneous 1087 cm3 breast-mimicking phantom at least as well as those
of the FEM, but required only 1/8 to 1/2 the computation time. These encouraging results on the

BEM forward model of fluorescence photon migration motivate us to pursue BEM-based fluorescence

tomography in future work.
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Appendix A. Analytical derivation of the Green matrix W

A modal decomposition procedure is applied to solve for the fundamental solution (W) of the coupled

adjoint system (15), as follows. Set ~K ¼ KT in Eq. (15) as
~K ¼
~Kx

~Kxm

0 ~Km

" #
;
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where
~Kx ¼
kx
Dx

; ~Kxm ¼ � b
Dm

; ~Km ¼ km
Dm

.

In order to solve the adjoint system (15), define a generic non-singular matrix V and the variable

transformation
W ¼ VU. ðA:1Þ
The new differential equation satisfied by the transformed variable U is readily derived from Eq. (10) as

follows:
r2U� ðV�1 ~KVÞUþ V�1Dj ¼ 0. ðA:2Þ
We now choose V to be the matrix having as column entries the eigenvectors of the matrix ~K. It follows that
V�1 ~KV ¼ K with K the diagonal matrix of the eigenvalues and Eq. (A.2) simplifies
r2U� KUþ V�1Dj ¼ 0. ðA:3Þ
Here,
K ¼
~Kx 0

0 ~Km

" #
; V ¼

1 a

0 1

� �
; V�1 ¼

1 �a

0 1

� �
; ðA:4Þ
where
a ¼
~Kxm

~Km � ~Kx

¼
b
Dm

kx
Dx
� km

Dm

. ðA:5Þ
From the matrix equation (A.3) the following scalar equations for the entries Uij of the matrix U can be

derived
r2U 11 � ~KxU 11 þ dðqÞ ¼ 0;

r2U 12 � ~KxU 12 � adðqÞ ¼ 0;

r2U 21 þ ~KmU 21 ¼ 0;

r2U 22 � ~KmU 22 þ dðqÞ ¼ 0.

ðA:6Þ
Note that the component U21 is zero and the analytical expression of the matrix U is readily obtained as2 3

U ¼

G
ffiffiffiffiffiffiffiffiffi
�~Kx

p
q

� �
�aG

ffiffiffiffiffiffiffiffiffi
�~Kx

p
q

� �
0 G

ffiffiffiffiffiffiffiffiffiffi
�~Km

p
q

� �64 75; ðA:7Þ
where Gð
ffiffiffiffiffiffiffi
�k

p
rÞ satisfies the Helmholtz-type equation
r2G� kGþ dðqÞ ¼ 0; k ¼ ~Kx; ~Km. ðA:8Þ
The following radiation boundary condition at infinity needs to be satisfied in order to guarantee decay-

outgoing solutions from the location x = xj, i.e.,
lim
q!1

oG
oq

� i
ffiffiffiffiffiffiffi
�k

p
G

� �
¼ 0. ðA:9Þ
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In two dimensions
Gð
ffiffiffiffiffiffiffi
�k

p
qÞ ¼ i

4
H 1

0

ffiffiffiffiffiffiffi
�k

p
q

� �
; ðA:10Þ
where H 1
0ðxÞ is the Hankel function of first kind and order 0, whereas in three dimensions
Gð
ffiffiffiffiffiffiffi
�k

p
qÞ ¼ 1

4pq
exp i

ffiffiffiffiffiffiffi
�k

p
q

� �
. ðA:11Þ
Using the transformation (A.1) the Green matrix W has the general expression as follows:
W ¼
G

ffiffiffiffiffiffiffiffiffi
�~Kx

p
q

� �
�aG

ffiffiffiffiffiffiffiffiffi
�~Kx

p
q

� �
þ aG

ffiffiffiffiffiffiffiffiffiffi
�~Km

p
q

� �
0 G

ffiffiffiffiffiffiffiffiffiffi
�~Km

p
q

� �
2
64

3
75. ðA:12Þ
Appendix B. Computation of the matrices H and G

Eqs. (30) and (31) are required to compute the element entries of the matrices H and G (Eqs. (29)), and

are repeated below:
h
jk

ð2�2Þ

¼ djkI
ð2�2Þ

þ
Z
oX

oWT

on
NkðxÞ dx; ðB:1Þ

g
jk

ð2�2Þ

¼ �
Z
oX

WTNkðxÞ dx. ðB:2Þ
Special computation is required if the node k coincides with one of the nodes attached to any of the trian-

gular elements attached to node xj. In this case, Gauss quadrature gives poor approximations. In order to

compute these integrals, we set a polar coordinate system (q,h) at xj. Since q = |x � xj|, Eqs. (B.1) and (B.2),

in the polar system, transform to
h
jk

ð2�2Þ

¼ djkI
ð2�2Þ

þ
Z
oX

oWT

oq
oq
on

Nkðq; hÞq dq dh; ðB:3Þ

g
jk

ð2�2Þ

¼ �
Z
oX

WTNkðq; hÞq dq dh. ðB:4Þ
Here, the integral in (B.4) is regular, sinceW � 1
q and can be easily computed by numerical quadrature in the

domain (q,h). The integral in (B.3) is weakly singular, since
oW

oq � 1
q2. In order to compute it, we consider an

external small spherical surface oX� of radius � centered at node xj (Fig. 10). The integral splits into two

components, as follows:
h
jk

ð2�2Þ

¼ djkI
ð2�2Þ

þ
Z
oX�

oWT

oq
oq
on

Nkðq; hÞq dq dhþ
Z
oXnoX�

oWT

oq
oq
on

Nkðq; hÞq dq dh. ðB:5Þ
Note that the second component of (B.5) vanishes, since oq
on ¼ 0 in oXnoX�. Consequently, the integral

simplifies as follows:



Fig. 10. Local geometry of a node, showing the spherical surface oX� centered at node xj, and the internal solid angle #j, described in

Appendix B.
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h
jk

ð2�2Þ

¼ djkI
ð2�2Þ

þ
Z
oX�

oWT

oq
Nkðq; hÞq dq dh. ðB:6Þ
In the limit as �! 0, it holds that Nk(q,h)! djk + o(�), and (B.6) simplifies to:
h
jk

ð2�2Þ

¼ djkI
ð2�2Þ

ð1� #jÞ þ oð�Þ. ðB:7Þ
Here, 4p#j is the internal solid angle in steradians, with respect to the normal direction facing the outside of
the boundary oX at the node xj (Fig. 10). If the surface is flat then #j ¼ 1

2
.

Appendix C. Analytic solution to homogeneous domain

We derived the analytic solution of the coupled system (10) as follows. Using a similar procedure as ap-

plied to derive the Green matrix as described in Appendix A, one can obtain the following eigenfunction

expansion for the equations in system (10). Using spherical coordinates q, u, and h,
Uxðq;u; hÞ ¼
X

Agf expðifhÞP f
gðuÞjg

ffiffiffiffiffiffiffiffiffiffi
� kx
Dx

s
q

 !
; ðC:1Þ

Umðq;u; hÞ ¼
X

expðifhÞP f
gðuÞ Bgfjg

ffiffiffiffiffiffiffiffiffiffiffi
� km
Dm

s
q

 !
� vAgfjg

ffiffiffiffiffiffiffiffiffiffi
� kx
Dx

s
q

 !" #
. ðC:2Þ
Here, Agf and Bgf depend upon the boundary conditions, P f
gðuÞ are the Legendre functions (for f = 0 they

become the Legendre polynomials Pg(u)), jg(x) is the spherical Bessel function of first kind of order g
jgðxÞ ¼
J gþ1

2ð ÞðxÞffiffiffi
x

p ; ðC:3Þ
where Jg(x) is the Bessel function of first kind of order g. The parameter v is defined as follows:
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v ¼ bDm

kx
Dx
� km

Dm

� � .

The boundary conditions (52) impose axisymmetry, i.e., f = 0, and from Eqs. (C.1) and (C.2) the two fol-

lowing equations are obtained:
AgDx

ffiffiffiffiffiffiffiffiffiffi
� kx
Dx

s
j0g

ffiffiffiffiffiffiffiffiffiffi
� kx
Dx

s
q

 !
¼ 1; ðC:4Þ

Bg

ffiffiffiffiffiffiffiffiffiffiffi
� km
Dm

s
j0g

ffiffiffiffiffiffiffiffiffiffiffi
� km
Dm

s
q

 !
� vAg

ffiffiffiffiffiffiffiffiffiffi
� kx
Dx

s
j0g

ffiffiffiffiffiffiffiffiffiffi
� kx
Dx

s
q

 !
¼ 0; ðC:5Þ
where j0gðxÞ is the derivative of jg(x). Then one can solve for the coefficients Ag and Bg and the solutions for

the homogeneous sphere (53) and (54) are readily derived.
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